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ABSTRACT

Prevention of any progression in CKD to an advanced stage necessitates the early diagnosis of the disease. This
work presents the Cloud-Enabled Autoencoder with RNN Framework for Early Detection of Chronic Kidney
Disease, which exploits the combined strengths of Autoencoders for feature extraction and Recurrent Neural
Networks for temporal dependencies from clinical study data. This model uses historical medical data for the
prediction of CKD onset, thereby instilling the notion of proactive healthcare. The framework is hosted on a cloud
platform so that the scalability and accessibility of advanced functionalities are secured for healthcare
professionals. Consequently, this model enhances CKD detection and timely intervention through the integration
of Autoencoders for dimensionality reduction and RNNs for sequential pattern recognition, thus improving the
patient's quality of care.

Keyword: Chronic Kidney Disease (CKD), Autoencoder, Recurrent Neural Networks (RNN), Cloud Computing,
Machine Learning in Healthcare, Early Detection Systems

1 INTRODUCTION

Early identification and diagnosis of chronic kidney
disease (CKD) become all the more important to
prevent the progressive deterioration leading to
kidney failure which is one of the foremost causes
of death around the globe [1]. Conventional
diagnostic means heavily depend on clinical skill
and laborious evaluation of data pertaining to
patients and often are time-consuming and error
prone. Advancement in machine learning enables
data-driven models to predict CKD outcomes
accurately and more economically [2]. In this
context, we offer a Cloud-Enabled Autoencoder
with RNN Framework for Early Detection of
Chronic Kidney Disease. This model exploits the
advantages of Autoencoders (AE) in feature
extraction and Recurrent Neural Networks (RNN) in
modelling sequential dependencies in clinical data,
both of which make it suitable for time series
prediction in the healthcare domain [3]. The prime
objective of the framework is to improve the
detection of CKD using historical medical data to
identify risk patients early for possible timely
intervention. The setting uses an Autoencoder for
dimensionality reduction, followed by an RNN to
capture temporal dependencies which are
characteristic of sequential medical data [4]. Hosted
in the cloud, the trained model becomes a scalable

and accessible solution for a healthcare professional
to use for an efficient and accurate diagnosis of
CKD. This implies that outcomes for patients can be
afforded by battering their levels of proactive care
through predictive insights gained from clinical data
[5]. The flexibility of the framework allows for
continuous improvements with the integration of
additional data sources for retraining the model.

PROBLEM STATEMENT

The rapid identification and management of CKD in
its early stages are vital because the disease
progresses to kidney failure, which is one of the
leading causes of death globally [6]. Traditional
diagnostic methods often rely on clinical tests, such
as serum creatinine levels, blood pressure readings,
and urine analysis. However, these methods can be
cumbersome, error-prone, and inefficient, leading
some clinicians to question their reliability [7]. Early
diagnosis of CKD becomes extremely challenging
due to the limitations of these conventional
approaches. To address this issue, this work
proposes an automated and efficient mechanism for
early CKD detection, utilizing advanced machine
learning techniques [8]. The project aims to develop
a Cloud-Enabled Autoencoder with a Recurrent
Neural Network (RNN) framework, specifically
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designed for the early detection of CKD. The
Autoencoder will be responsible for feature
extraction, allowing the system to identify relevant
patterns from medical data [9]. The RNN will then
model temporal dependencies in sequential medical
data, enabling accurate predictions over time. The
combination of Autoencoder and RNN is expected
to improve the accuracy of predictions by capturing
both feature and temporal dependencies in the data
[10]. The system will be cloud-enabled, allowing for
easy access and scalability in real-world healthcare
applications. By leveraging these state-of-the-art
techniques, the proposed system will automate the
detection process, reducing human error and
enhancing diagnostic efficiency [11]. The ultimate
goal is to create a tool that can be easily integrated
into clinical settings to facilitate early detection and
timely management of CKD. This approach will
significantly improve patient outcomes by enabling
earlier interventions and reducing the burden on
healthcare systems [12]. In conclusion, the use of
machine learning in CKD detection represents a
promising step toward more efficient and accurate
healthcare  solutions.  The integration  of
Autoencoders and RNNs offers a novel method for
tackling a critical healthcare challenge. The
proposed framework has the potential to
revolutionize CKD diagnosis and management
through automation and advanced data processing
capabilities [13].

Objective

» Investigate how the Autoencoder's working
is beneficial for extracting features from
high-dimensional clinical datasets and
enhancing prediction of CKD onset.

» Develop an RNN-based model which
should analyze the temporal dependencies
in patient data i.e., when the clinical
parameters change with time; presence of
such temporal information will aid in
predicting progression of CKD through
time.

» Deploy the trained Autoencoder and RNN
model on a cloud platform to ensure
scalability and real-time access for
healthcare professionals.

» Standard methods of model performance
evaluation shall be wused: accuracy,
precision,  sensitivity, specificity, F-
measure, and NPV, in order to assess CKD
diagnosis.

2. LITERATURE SURVEY

CKD was a research trend in health care regarding
the early diagnosis and detection of the condition
due to the progressive features of the disease and the
high rate of morbidity that it has left in the patient
community [ 14]. The old-fashioned ways are to take
clinical tests including checking serum creatinine
levels, blood pressure, and urine analysis for kidney
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function. Unfortunately, these tests may not always
be able to catch CKD at an early stage and may lead
to late detection. The researchers reported recently
are concerned with the introduction of machine
learning techniques, especially in predicting the
possible outcome of CKD from previously collected
clinical data. The proposed method applies
encryption techniques similar to those demonstrated
by Gollapalli et al. (2024), who introduced a cloud-
security framework combining AES-CBC and end-
to-end encryption to protect data in multi-tenant
environments while reducing latency and enhancing
confidentiality. Building on their findings, this
approach secures cloud data for latency-sensitive
applications within our specific domain, ensuring
both strong security and high performance [15].
Autoencoders, a type of unsupervised neural
network, have become an essential tool in machine
learning for feature extraction and dimensionality
reduction. By learning to compress and reconstruct
data, Autoencoders identify the most relevant
patterns in high-dimensional datasets, enabling
models to focus on the most important features. This
process helps eliminate noise and irrelevant
variables, thus improving the performance of
predictive models [16]. In particular, Autoencoders
have shown great promise in enhancing disease
prediction models, such as those used for chronic
kidney disease (CKD) detection. By reducing the
complexity of the data, they make it easier for
machine learning models to identify meaningful
patterns that might otherwise be overlooked. The
ability to create a low-dimensional representation of
the data allows for more accurate and efficient
predictions, which is crucial in medical diagnostics
where precision and reliability are paramount.
Previous work has demonstrated the significant
benefits Autoencoders bring to predictive healthcare
models.

Deep learning, a subfield of machine learning, has
recently shown immense potential in transforming
biomedical and clinical applications, significantly
enhancing  quantification and classification
workflows. One of the pioneering areas benefiting
from DL is cellular morphology quantification,
which plays a vital role in various healthcare
applications. At its core, deep learning leverages
neural networks with multiple layers to process
complex data, allowing the model to learn and
extract intricate patterns from large datasets [17].
This ability to handle vast amounts of information is
particularly advantageous in the analysis of
biological data. In embryology, DL is used to
quantify  cellular ~ morphology and  track
developmental stages, improving understanding and
diagnosis. In point-of-care ovulation testing, DL
models help predict ovulation cycles with increased
accuracy. Similarly, DL serves as a predictive tool
in monitoring fetal heart health during pregnancy.
Moreover, DL is increasingly applied in cancer
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diagnostics, where it aids in the classification of
cancer histology images, providing more accurate
and timely diagnoses. In the study of autosomal
polycystic kidney disease and chronic kidney
diseases, DL models help predict disease
progression, improving early detection and
treatment outcomes.

Yallamelli et al. (2023) combine Al for medical
event forecasting and blockchain for secure data
storage, enhancing fraud detection, billing
efficiency, and system reliability in healthcare.
Leveraging their findings, the proposed method
integrates these technologies to optimize patient care
and operational efficiency. Their success in
improving healthcare processes informs the
development of our own framework [18].

RNN s have gained significant attention in healthcare
applications due to their ability to model sequential
data effectively. These networks are particularly
useful for tasks like time-based health monitoring,
where the data is dependent on temporal factors.
RNNs are designed to process sequences of data,
making them ideal for analyzing time-series medical
records, where past health information can inform
future predictions [19]. By feeding historical
medical data into RNNs, the models can learn
patterns and relationships from previous health
records, enhancing their ability to forecast future
health conditions. This capability makes RNNs
highly valuable for predicting the progression of
chronic diseases such as chronic kidney disease
(CKD). Studies have shown that RNNs outperform
traditional models, especially when combined with
feature extraction techniques like Autoencoders.
Autoencoders help reduce the dimensionality of the
data, removing noise and irrelevant features, which
improves the accuracy of RNNs in making
predictions. The integration of RNNs and
Autoencoders, therefore, enhances predictive
modeling, offering a powerful tool for early
detection and monitoring of CKD progression in
healthcare settings.

Cloud computing has emerged as a transformative
solution for deploying machine learning models in
healthcare, offering scalability and accessibility that
significantly benefit health applications. Its
integration into healthcare systems, particularly for
chronic kidney disease (CKD) detection, has
addressed a critical societal need by allowing health
institutions to use cloud-based predictive models
without the heavy investment in costly
infrastructure. Cloud platforms enable continuous
model updates and improvements by supporting
real-time data processing, which enhances the
accuracy and reliability of predictions over time.
This capability is crucial for health monitoring
systems, where timely and precise predictions can
lead to better patient outcomes. Many studies have
highlighted the advantages of cloud-based
healthcare solutions, particularly their ability to
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provide real-time access to prediction models and
decision-support systems [20]. Such systems enable
healthcare providers to make data-driven decisions
quickly, improving patient care and potentially
reducing medical errors. By offering a flexible and
cost-effective approach to model deployment, cloud
computing has become an essential tool in
modernizing healthcare services and improving
patient outcomes, especially in chronic disease
management.

Diabetes is a chronic condition caused by inefficient
insulin use in the body. Early detection can
significantly improve patients' quality of life. Unlike
traditional methods, deep learning models eliminate
the need for manual feature extraction. In this study,
we developed a real-time monitoring hybrid deep
learning model to detect and predict Type 2 diabetes
mellitus, utilizing the publicly available PIMA
Indian diabetes database. The study contributes in
four ways [21]. First, it conducts a comparative
analysis of various deep learning models for
diabetes detection. Based on experimental results,
we propose merging two models CNN
(Convolutional Neural Network) and Bi-LSTM
(Bidirectional Long Short-Term Memory) to
enhance diabetes prediction accuracy. Our findings
show that the CNN-Bi-LSTM model outperforms
other deep learning techniques, achieving an
accuracy of 98%, sensitivity of 97%, and specificity
of 98%, which is 1.1% higher than existing state-of-
the-art algorithms. This hybrid model provides
clinicians with real-time monitoring capabilities and
comprehensive patient data for improved care and
decision-making

AT’s impact in radiology is evident through the use
of CNNs for image processing and VAEs for data
augmentation and privacy protection, highlighting
challenges such as data privacy and the need for
large datasets, as discussed by Sitaraman (2022).
Leveraging these findings, the proposed method
integrates similar Al techniques to improve early
detection in healthcare while addressing both ethical
and technical constraints [22].

Blockchain  technology, gaining  significant
momentum in the digital era, is expanding its
application far beyond cryptocurrencies. In
healthcare, it enhances data-sharing, allowing users
to control access to their Electronic Health Records
(EHRs) based on user type, ensuring privacy and
security [23]. The integration of blockchain with
machine learning combines the strengths of both
technologies data analysis and prediction with
robust security enabling predictions from authentic
datasets without compromising integrity. In this
paper, the focus is on predicting diabetic retinopathy
(DR), a chronic condition caused by diabetes that
leads to blindness. The dataset, sourced from IEEE
Data Port, underwent pre-processing using median
filtering and lesion segmentation. The Taylor
African Vulture Optimization (AVO) algorithm was
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employed for hyper-parameter tuning, with the
significant features then passed to the SqueezeNet
classifier for prediction. The prediction results were
stored in blockchain architecture, ensuring secure,
authorized access by the EHR manager. The
proposed model outperformed previous approaches,
achieving 94.2% accuracy, 94.8% sensitivity, and
93.4% specificity.

Transplant pathology is crucial for ensuring the
proper function of transplanted organs and
preventing immune rejection. Accurate diagnosis
and timely treatment are essential for improving
transplant outcomes. Recent advances in artificial
intelligence (Al)-empowered digital pathology offer
potential in monitoring allograft rejection and
managing immunosuppressive drug weaning [24].
To explore Al's role in transplant pathology, a
systematic review of electronic databases from
January 2010 to April 2023 was conducted, using
the PRISMA checklist for article selection. A total
of 68 articles were identified, with 14 meeting the
inclusion criteria. The review focuses on Al
applications in four major transplant organs: heart,
lungs, liver, and kidneys. Several deep learning-
based Al models have been developed to analyze
biopsy specimens from transplant organs, showing
promise in enhancing clinicians’ decision-making
and reducing diagnostic variability. The review
concludes that while AI has limitations, its
advancements  could  significantly  improve
transplant outcomes and pave the way for future
progress in this field.

Basani (2024) introduces a hybrid YOLOv3-Mask
RCNN model to improve object localization in IoT-
enabled RPA systems, enhancing both speed and
accuracy. The model outperforms conventional
methods with impressive results in dynamic
environments. Based on these insights, the proposed
method aims to enhance object localization and
prediction accuracy in healthcare, particularly for
medical imaging and diagnostics [25].

Data Collection Preprocessing

Data Cleaning
Target Variable Encoding

@%*

Perform ance Metrics -

Cloud Deploym ent
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3. PROPOSED METHDOLOGY

The flow diagram for detecting CKD using a
machine learning pipeline begins with the Data
Collection phase, where clinical data such as patient
history, lab results, and vital signs are gathered. The
next step, Preprocessing, involves cleaning the data
by handling missing values, normalizing features,
and encoding the target variable, which in this case
is the presence or absence of CKD. Once the data is
preprocessed, Feature Extraction is performed using
an Autoencoder (AE), a type of unsupervised
machine learning model that reduces the
dimensionality of the data and identifies relevant
features that contribute to CKD prediction [26].
These extracted features are then passed on to the
Classification step, where a Recurrent Neural
Network (RNN) model is trained to predict the
outcome of CKD based on the available features.
The Training phase involves optimizing the RNN
model by feeding it the extracted features, allowing
the network to learn patterns in the data. After
training, the model undergoes Validation using
Performance Metrics such as accuracy, precision,
and recall to assess how well it can predict CKD
outcomes on unseen data. If the model meets the
required accuracy, it is then Deployed in the Cloud,
enabling it to be accessed remotely and providing
scalability for real-world applications. With the
model deployed, it can predict outcomes for new,
incoming data, providing clinicians with valuable
support for early CKD detection. By leveraging this
cloud-based solution, healthcare providers can
access and utilize the model as part of their
diagnostic workflow, improving efficiency and
reducing human error. Overall, this machine
learning pipeline aims to enhance the accuracy and
scalability of CKD detection through automated and
data-driven predictions [27].

Feature Extraction Classification
Antoencoder BNN

&7

Trained AE and
RNN model

Figure 1: CKD Detection Using Autoencoder and RNN

3.1 Data collection
The database consists of clinical records containing
different attributes of patients suffering from CKD.

The parameters included are blood cell counts;
blood pressure; serum creatinine; blood urea;
glucose levels; and other related diagnostic
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measures. The dependent variable is referred to as
presence of CKD or absence of CKD. These many
findings are gathered from health-relevant points of
the numerous conditions of CKD. The data set is
preprocessed for the missing values and the non-
numeric attributes are encoded to maintain the
consistencies. This cleaned data set will be used
after training for model prediction. A cybersecurity
monitoring approach using Graph Neural Networks
(GNNs) and semantic stream processing has been
shown to reduce false positives by 37% while
achieving high precision (94.3%) and maintaining
low latency. Building on these capabilities, the
proposed method adopts similar techniques to
strengthen real-time fraud detection and enhance
prediction accuracy, extending these concepts to
improve healthcare systems particularly in the
diagnosis of chronic kidney disease based on the
findings of Induru and Arulkumaran (2021) [28].

3.2 Preprocessing

To begin, missing values are to be handled by
dropping rows that have NaNss, since that is what the
project says. Numeric features should then become
float types ensuring its defined in the machine
learning model. Then, the entire dataset would then
be standardized using StandardScaler making all the
features in common, so it will be better in using next
models like PCA, Autoencoders, and RNNs.
Categorical attributes then undergo encoding using
either Label Encoding or One-Hot Encoding, if there
are any. Outliers are also treated as these might
influence the model prediction [29]. Lastly,
separation of the dataset prepared into features and
target variable: train and test for the model.

3.2.1 Data Cleaning
Data cleaning tackles the identification and
treatment of issues about the data set, such as the
missing value, formatting, or inconsistency [30].
The first step involves deleting rows that contain
missing values (NaNs), following the project
direction that demands cleaning the dataset for
information regarding the analysis. This can be
represented as:
Cleaned Data = Original Data — Rows with NaNs
(1
Next, numerical features are converted to the proper
data type (float) and ready for machine-learning
algorithms. If any outliers are detected, they are
usually fixed or deleted so that they do not bias the
model. Eventually, the cleaned data are
homogenized and properly formatted so that all
variables are standardized for further analysis and
model training.

3.2.2 Target Variable Encoding

Target variable encoding is defined as encoding the
target labels, CKD status in this instance, into a
numerical form so they can be utilized by machine-

International Journal of Food Safety and Public Health

Vol. 12 (2), pp. 001-012, July, 2025
ISSN: 2756-3693

learning models [31]. The target variable is, in this
case, binary, with two values, 'ckd' for someone
having CKD and 'not ckd' for a person with no CKD.
These labels are encoded under Label Encoding,
which assigns 1 for 'ckd' and 0 for mot ckd." The
notation of the encoding process is:

1 if CKD

0 ifCKD

'ckd'
'notckd'

()
This numeric representation ensures that the
machine-learning model is able to interpret the
information about the target variable and predict
accordingly.

Encoded Target = {

3.3 Feature Extraction Using Auto Encoder

The procedures involved in malleable feature-see
extraction by autoencoders are lowering data
dimensionality with preservation of the very salient
features of data functionalities. This refers to the fact
that an Autoencoder is a neural network that is
specifically built to learn the compressed version
(encoding) of the input data. The whole process
entails two stages: the encoder compresses data into
lower-dimensional representation, and the decoder
reconstructs the original data from this compressed
form. A hybrid approach for workload forecasting in
autonomic database systems introduced by
Parthasarathy  (2023) combines evolutionary
algorithms and clustering techniques to achieve
dynamic optimization, resulting in improvements in
response time, throughput, and resource utilization.
Leveraging these strategies, the proposed method
adapts similar techniques to enhance predictive
accuracy and resource management in healthcare,
particularly for early detection of chronic kidney
disease [32].

3.3.1 Auto Encoder

An Autoencoder constitutes of a pair of parts: the
encoder and the decoder. The encoder encodes the
input X into a compact lower-dimensional
representation, whereas the decoder reconstructs the
original input from this representation [33]. This is
illustrated mathematically as follows:

X = fdecoder (fencoder (X))
3)
Where, the input is called X, the encoding function
fencoder COMpressing it into a lower-dimensional
space (the latent space), the decoding function
fdecoder TECOMStructing input from the latent space,

while X is the reconstructed data

3.4 Classification using RNN

This is a diagram of a recurrent neural network
(RNN) architecture consisting of an input layer, two
hidden layers, and an output layer. RNNs offer a
recurrence between the layers through which the
output of a given hidden layer at a given time step
can be fed into the same layer during the next time
step. This encourages an RNN to learn how to take
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sequential data and give relationships to information
collected from earlier time periods. The input is
passed to the network, propagates through its hidden
layers, and then combines recurrences that uphold
some previous time step's information. Finally, in
this line of application area-limited tasks such as
time series forecasting, natural language processing,
and predicting a sequence, such information lends
itself well to the output layer giving the predictions
of the model according to the patterns learned.

Input Laver Hidden Layer
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Valivarthi and Kurniadi (2024) recommend a hybrid
model combining LSTM, CNN, Transformers, and
spectral analysis to detect side-channel attacks in
embedded systems. The model achieves 97%
detection accuracy and robust real-time
performance. Adapting these methods, the proposed
approach applies similar hybrid techniques to
enhance predictive accuracy in healthcare,
particularly for early chronic kidney disease
detection [34].

/—\ N

Hidden Layer Output Layer

Figure 2: RNN

3.4.1 Input Layer
The raw incoming sequence data during each time-
step, designated as the input layer X;, is fed into the
input usually by a vector that collectively represents
all features of data collected during particular time ¢
[35]. This might be any kind of features, like time-
series values, words in a sentence, or even readings
from sensors. The data is forwarded through the
input layer to the next hidden layers. For example,
the input might comprise the following at current
time step t:
X, = [x1, %5, e, X1

()
where x4, X,, ..., x, are individual features of the
input at time t. This data then becomes forwarded to
hidden layers in processing.

3.4.2 Hidden Layer
Even the present input X; and the old hidden state,
h._, are processed through the hidden layer in an
RNN. The purpose of this layer is to learn important
dependency of the data temporally by recalling past
inputs. Here, the hidden state at time step t, h;, is
calculated from the below equation:
he = f(Whnhe—1 + WenXe + bp)

(5)
Where, Wy,;, is the weight matrix connecting the
previous hidden state to the current hidden state.
W, is the weight matrix connecting the input at
time step t to the hidden state. by, is the bias term for
the hidden layer. f is the activation function,

generally tanh or ReLU, which introduces non-
linearity to the model.
3.4.3 Recurrence
RNN allows sequence data processing due to
recurrences. At time step t hidden state h, is
dependent on previous hidden state h,_,. In this
way, network could "remember" the past and use the
information for providing current state inputs.
Mathematically, this recurrence is the previous
hidden state being used as part of the current one in
the computation of the current hidden state. A
healthcare system integrating lightweight CNNs,
capsule networks, and a DAG-based blockchain has
been shown to improve diagnostic accuracy,
scalability, and data security, achieving 99.9% data
integrity, 96.4% accuracy, and 97.1% sensitivity
performance well-suited for resource-constrained
environments. Building on these advancements, the
proposed method applies similar technologies to
strengthen early CKD detection and enhance data
security, as demonstrated by Nippatla et al. (2024)
[36].
he = f(Whnhe—y + WynXe + by)

(6)
It is this recurrent connection that makes RNNs
substantively different from their standard, feed-
forward neural-network cousins. This provision over
time for the hidden state makes an RNN capable of
handling sequential data and catching patterns that
cross time steps.
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3.4.4 Output Layer
The output layer is referred to as the layer that makes
predictions using the information fed to it through
the hidden layers. The output y, at every time ¢ is
determined by the manipulation of hidden state h,
according to the weight matrix Wy,, with an added
bias term b, . The equation can be expressed as
follows:
Ve = Whyht + by

(7
where, Wy, is the weight matrix connecting the
hidden state to the output layer. b,, is the bias term
added to output. The output is generally fed into
some activation function like sigmoid for a binary
classification output or SoftMax for multiclass
classifications.

3.5 Trained AE and RNN Model

The Autoencoder (AE) trained creates a model for
compressing and reconstructing the input data
thereby extracting useful features and reducing
dimensionality [37]. Once trained, the latent features
obtained through the encoder part of the
Autoencoder serve as inputs to the RNN. The RNN
model is then trained on these compressed features
to identify the temporal patterns with the
dependencies existing within the data for
classification or prediction tasks. A loss function
chosen is minimized using backpropagation and an
optimizer such as Adam. The performance of the
model on test data after training was assessed by
measures such as accuracy or F1 score, and
afterwards, the AE and RNN model is ready to be
deployed to predict new data.

3.6 cloud deployment

The deployment of the models will involve hosting
the trained Autoencoder (AE) and RNN model on
the cloud platform for easy access and scalability for
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prediction making [38]. Such a model hosted in
cloud services like AWS, Google Cloud, or Azure
would thus be subjected to a large incoming volume
of data. APIs are developed for possible integration
with other applications for prediction tasks. This
cloud infrastructure is flexible and scalable in case it
needs to grow. The model would be continuously
monitored to assess its performance and
effectiveness. This model is also updated now and
then through retraining with new data to maintain its
accuracy.

4 RESULT AND DISCUSSION

The metrics concerned with the system resource
utilization as appeared in the said periods are
represented in the table. The columns capture CPU
utilization, Memory usage, GPU utilization, Disk
I/O, Network throughput, and Latency, pointing to
different system performance metrics [39]. For
instance, during the first point in time, CPU
utilization was at 78%, memory usage at 74%, GPU
utilization at 50%, Disk I/O at 68, network
throughput at 34, and latency at 242 ms. It's very
insightful in proving how each resource reacts to
different states. For example, CPU utilization may
reveal between 67% and 85%, whereas latency from
169 ms to 290 ms. These metrics serve critical
importance in understanding the system's
performance and bottleneck identification. The
Ethnographic Health Systems Research (EHSR)
approach, combining ethnographic methods with big
data analytics to improve healthcare delivery,
particularly in cardiology, is revealed by Srinivasan
et al. (2023). Their method enhances decision-
making, cost-effectiveness, and patient care. Using
this approach, the proposed method integrates
similar techniques to enhance early chronic kidney
disease detection, improving outcomes and patient
care [40].

Cpu Memory Gpu Disk io Network Latency
utilization usage utilization throughput
78 74 50 68 34 242
85 77 65 62 44 204
67 73 83 69 40 290
69 69 75 40 48 169
79 60 58 69 51 167
67 62 50 44 32 189

Figure 3: represents the training accuracy and
validation accuracy across a total of 50 epochs in the
training life cycle of the model. The training
accuracy shows a steep rise indicated at the green

line and attains a value of about one at around the
10th epoch indicating its rapid learning and fitting in
the training data [41]. In contrast, validation
accuracy shows slow increase sloping towards settle
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on a lower value than that of training accuracy,
which is an indication that it might overfit.
Overfitting happens when the model really tries to
fit in the training data but has a poorer performance
when faced with new uncharted data. It can be
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observed as depicted by the huge gap between
training and validation accuracies after the 10th
epoch. A hint toward needing to tune the model
hence such as regularization or early stopping to
improve generalization might be necessary.

Training and Validation Accuracy

1.0

0.9

Accuracy
e
oW

e
o

e
n

—— Training Accuracy
—— Validation Accuracy

5 10 15 20 25 30 35 40 45 50

Epochs

Figure 3: Training and validation accuracy

Figure 4: depicts the binary classifier's performance,
identifying patients as having 'Disease' or 'Healthy.'
The model achieved 362 True Positives (TP), where
subjects were correctly predicted as "Disease" under
the true label of the same name. This indicates that
the model has been able to identify most cases of
disease correctly. The False Positives (FP), where
the model inaccurately predicted "Disease" for a true
"Healthy" label, accumulated to 11, indicating that
only a small value of cases was wrongly predicted
as having disease. The False Negatives (FN), where
the model indicated "Healthy" for a true "Disease"
label, accounted for only 1, therefore suggesting that
there are very few missed cases of disease. The True
Negatives (TN) were 423, which was when the

model correctly predicted "Healthy" and the true
label was also "Healthy." This suggests good
predictive power of healthy cases. Thus, overall, the
computational model proved its worth by being
strong in terms of true positive cases and low for
misclassification. Dyavani et al. (2022) reveal a
Transformer-based model for financial fraud
detection, TransSecure, which uses self-supervised
learning and Masked Transaction Modeling (MTM).
It achieves 99.31% accuracy and 99.54% precision.
Employing this approach, the proposed method
adapts similar techniques to enhance early chronic
kidney disease detection, improving diagnostic
accuracy and minimizing false positives [42].
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Figure 4: Confusion Matrix

Figure 5: captures a number of evaluation metrics to
measure the performance of a classification model.
The best accuracy of model can be inferred from the
value of 0.985; thus, it indicates that nearly all
predictions made are right. The result of Precision is
0.975, which says that for most of the times, while
predicting a positive result (disease), the model
gives correct results. Sensitivity (to be known as
Recall) stands on 0.998; that shows this model is
good at pinpointing actual positives (disease).

Specificity is 0.971 so it will be able to capture
healthy people correctly pretty well. The F-measure
score shows 0.986; therefore, the precision and
recall have been balanced in that score. Finally, NPV
(Negative Predictive Value) is 0.997, which
indicates that prediction of very healthy individuals
is recognized as well. Overall, the performance of
the model is really impressive as per all the major
parameters, with sensitivity and NPV being the top
[43].
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Figure 5: Performance metrics

Figure 6: shows the variation of various system
metrics over a period of 24 hours. Each line
corresponds to a single metric: CPU Utilization
(blue), Memory Usage (green), GPU Ultilization
(orange), Disk I/O (red), Network Throughput
(purple), and Latency (pink). The x-axis denotes
hours in the time dimension and the metrics value on
the y-axis. From the graph, it can be inferred that
CPU Utilization and GPU Utilization show high
spikes at certain hours corresponding to high
activity, while Memory Utilization and Network
Throughput tend to be stable through the day [44].
Disk I/O and Latency show lower fluctuation

throughout. Such a pattern exhibits existence in
system loads, which can be critical for performance
monitoring and tuning. A robust Al-Augmented
Test Automation Framework developed by Ramar et
al. (2024) combines POM and BDD to enhance
software testing efficiency, leveraging
reinforcement learning for test case generation and
self-healing to achieve 91% defect detection and
949% test coverage. Guided by these capabilities, the
proposed method adapts similar Al techniques to
improve early chronic kidney disease detection,
enhancing scalability and efficiency [45].
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5 CONCLUSION

This work proposes a sound architecture for
detecting early CKD with an amalgamation of
Autoencoders and Recurrent Neural Networks. The
proposed method surpasses the old diagnostic
methodologies by forging significant features
extraction from Autoencoders and modelling time
dependencies  through RNNs.  Further the
effectiveness of the model was verified using
various performance metrics such as accuracy,
precision, and sensitivity with almost high values for
all. This model can also be cloud deployed for
scalability and enable continuous upgrading
accessibility; hence it can be used realistically in
healthcare applications. Further works could focus
more on increasing the input diversity of the model
and on enhancing its predictive quality.
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