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ABSTRACT 
Prevention of any progression in CKD to an advanced stage necessitates the early diagnosis of the disease. This 
work presents the Cloud-Enabled Autoencoder with RNN Framework for Early Detection of Chronic Kidney 
Disease, which exploits the combined strengths of Autoencoders for feature extraction and Recurrent Neural 
Networks for temporal dependencies from clinical study data. This model uses historical medical data for the 
prediction of CKD onset, thereby instilling the notion of proactive healthcare. The framework is hosted on a cloud 
platform so that the scalability and accessibility of advanced functionalities are secured for healthcare 
professionals. Consequently, this model enhances CKD detection and timely intervention through the integration 
of Autoencoders for dimensionality reduction and RNNs for sequential pattern recognition, thus improving the 
patient's quality of care. 
 
Keyword: Chronic Kidney Disease (CKD), Autoencoder, Recurrent Neural Networks (RNN), Cloud Computing, 
Machine Learning in Healthcare, Early Detection Systems 
 
1 INTRODUCTION 
Early identification and diagnosis of chronic kidney 
disease (CKD) become all the more important to 
prevent the progressive deterioration leading to 
kidney failure which is one of the foremost causes 
of death around the globe [1]. Conventional 
diagnostic means heavily depend on clinical skill 
and laborious evaluation of data pertaining to 
patients and often are time-consuming and error 
prone.  Advancement in machine learning enables 
data-driven models to predict CKD outcomes 
accurately and more economically [2]. In this 
context, we offer a Cloud-Enabled Autoencoder 
with RNN Framework for Early Detection of 
Chronic Kidney Disease. This model exploits the 
advantages of Autoencoders (AE) in feature 
extraction and Recurrent Neural Networks (RNN) in 
modelling sequential dependencies in clinical data, 
both of which make it suitable for time series 
prediction in the healthcare domain [3]. The prime 
objective of the framework is to improve the 
detection of CKD using historical medical data to 
identify risk patients early for possible timely 
intervention. The setting uses an Autoencoder for 
dimensionality reduction, followed by an RNN to 
capture temporal dependencies which are 
characteristic of sequential medical data [4]. Hosted 
in the cloud, the trained model becomes a scalable 

and accessible solution for a healthcare professional 
to use for an efficient and accurate diagnosis of 
CKD. This implies that outcomes for patients can be 
afforded by battering their levels of proactive care 
through predictive insights gained from clinical data 
[5]. The flexibility of the framework allows for 
continuous improvements with the integration of 
additional data sources for retraining the model. 
 
 
PROBLEM STATEMENT 
The rapid identification and management of CKD in 
its early stages are vital because the disease 
progresses to kidney failure, which is one of the 
leading causes of death globally [6]. Traditional 
diagnostic methods often rely on clinical tests, such 
as serum creatinine levels, blood pressure readings, 
and urine analysis. However, these methods can be 
cumbersome, error-prone, and inefficient, leading 
some clinicians to question their reliability [7]. Early 
diagnosis of CKD becomes extremely challenging 
due to the limitations of these conventional 
approaches. To address this issue, this work 
proposes an automated and efficient mechanism for 
early CKD detection, utilizing advanced machine 
learning techniques [8]. The project aims to develop 
a Cloud-Enabled Autoencoder with a Recurrent 
Neural Network (RNN) framework, specifically 



International Journal of Food Safety and Public Health  
Vol. 12 (2), pp. 001-012, July, 2025 

ISSN: 2756-3693 
 

2 
 

designed for the early detection of CKD. The 
Autoencoder will be responsible for feature 
extraction, allowing the system to identify relevant 
patterns from medical data [9]. The RNN will then 
model temporal dependencies in sequential medical 
data, enabling accurate predictions over time. The 
combination of Autoencoder and RNN is expected 
to improve the accuracy of predictions by capturing 
both feature and temporal dependencies in the data 
[10]. The system will be cloud-enabled, allowing for 
easy access and scalability in real-world healthcare 
applications. By leveraging these state-of-the-art 
techniques, the proposed system will automate the 
detection process, reducing human error and 
enhancing diagnostic efficiency [11]. The ultimate 
goal is to create a tool that can be easily integrated 
into clinical settings to facilitate early detection and 
timely management of CKD. This approach will 
significantly improve patient outcomes by enabling 
earlier interventions and reducing the burden on 
healthcare systems [12]. In conclusion, the use of 
machine learning in CKD detection represents a 
promising step toward more efficient and accurate 
healthcare solutions. The integration of 
Autoencoders and RNNs offers a novel method for 
tackling a critical healthcare challenge. The 
proposed framework has the potential to 
revolutionize CKD diagnosis and management 
through automation and advanced data processing 
capabilities [13]. 
 
Objective 

 Investigate how the Autoencoder's working 
is beneficial for extracting features from 
high-dimensional clinical datasets and 
enhancing prediction of CKD onset.  

 Develop an RNN-based model which 
should analyze the temporal dependencies 
in patient data i.e., when the clinical 
parameters change with time; presence of 
such temporal information will aid in 
predicting progression of CKD through 
time.  

 Deploy the trained Autoencoder and RNN 
model on a cloud platform to ensure 
scalability and real-time access for 
healthcare professionals.  

 Standard methods of model performance 
evaluation shall be used: accuracy, 
precision, sensitivity, specificity, F-
measure, and NPV, in order to assess CKD 
diagnosis. 

2. LITERATURE SURVEY 
CKD was a research trend in health care regarding 
the early diagnosis and detection of the condition 
due to the progressive features of the disease and the 
high rate of morbidity that it has left in the patient 
community [14]. The old-fashioned ways are to take 
clinical tests including checking serum creatinine 
levels, blood pressure, and urine analysis for kidney 

function. Unfortunately, these tests may not always 
be able to catch CKD at an early stage and may lead 
to late detection. The researchers reported recently 
are concerned with the introduction of machine 
learning techniques, especially in predicting the 
possible outcome of CKD from previously collected 
clinical data. The proposed method applies 
encryption techniques similar to those demonstrated 
by Gollapalli et al. (2024), who introduced a cloud-
security framework combining AES-CBC and end-
to-end encryption to protect data in multi-tenant 
environments while reducing latency and enhancing 
confidentiality. Building on their findings, this 
approach secures cloud data for latency-sensitive 
applications within our specific domain, ensuring 
both strong security and high performance [15].  
Autoencoders, a type of unsupervised neural 
network, have become an essential tool in machine 
learning for feature extraction and dimensionality 
reduction. By learning to compress and reconstruct 
data, Autoencoders identify the most relevant 
patterns in high-dimensional datasets, enabling 
models to focus on the most important features. This 
process helps eliminate noise and irrelevant 
variables, thus improving the performance of 
predictive models [16]. In particular, Autoencoders 
have shown great promise in enhancing disease 
prediction models, such as those used for chronic 
kidney disease (CKD) detection. By reducing the 
complexity of the data, they make it easier for 
machine learning models to identify meaningful 
patterns that might otherwise be overlooked. The 
ability to create a low-dimensional representation of 
the data allows for more accurate and efficient 
predictions, which is crucial in medical diagnostics 
where precision and reliability are paramount. 
Previous work has demonstrated the significant 
benefits Autoencoders bring to predictive healthcare 
models. 
Deep learning, a subfield of machine learning, has 
recently shown immense potential in transforming 
biomedical and clinical applications, significantly 
enhancing quantification and classification 
workflows. One of the pioneering areas benefiting 
from DL is cellular morphology quantification, 
which plays a vital role in various healthcare 
applications. At its core, deep learning leverages 
neural networks with multiple layers to process 
complex data, allowing the model to learn and 
extract intricate patterns from large datasets [17]. 
This ability to handle vast amounts of information is 
particularly advantageous in the analysis of 
biological data. In embryology, DL is used to 
quantify cellular morphology and track 
developmental stages, improving understanding and 
diagnosis. In point-of-care ovulation testing, DL 
models help predict ovulation cycles with increased 
accuracy. Similarly, DL serves as a predictive tool 
in monitoring fetal heart health during pregnancy. 
Moreover, DL is increasingly applied in cancer 
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diagnostics, where it aids in the classification of 
cancer histology images, providing more accurate 
and timely diagnoses. In the study of autosomal 
polycystic kidney disease and chronic kidney 
diseases, DL models help predict disease 
progression, improving early detection and 
treatment outcomes. 
Yallamelli et al. (2023) combine AI for medical 
event forecasting and blockchain for secure data 
storage, enhancing fraud detection, billing 
efficiency, and system reliability in healthcare. 
Leveraging their findings, the proposed method 
integrates these technologies to optimize patient care 
and operational efficiency. Their success in 
improving healthcare processes informs the 
development of our own framework [18]. 
RNNs have gained significant attention in healthcare 
applications due to their ability to model sequential 
data effectively. These networks are particularly 
useful for tasks like time-based health monitoring, 
where the data is dependent on temporal factors. 
RNNs are designed to process sequences of data, 
making them ideal for analyzing time-series medical 
records, where past health information can inform 
future predictions [19]. By feeding historical 
medical data into RNNs, the models can learn 
patterns and relationships from previous health 
records, enhancing their ability to forecast future 
health conditions. This capability makes RNNs 
highly valuable for predicting the progression of 
chronic diseases such as chronic kidney disease 
(CKD). Studies have shown that RNNs outperform 
traditional models, especially when combined with 
feature extraction techniques like Autoencoders. 
Autoencoders help reduce the dimensionality of the 
data, removing noise and irrelevant features, which 
improves the accuracy of RNNs in making 
predictions. The integration of RNNs and 
Autoencoders, therefore, enhances predictive 
modeling, offering a powerful tool for early 
detection and monitoring of CKD progression in 
healthcare settings. 
Cloud computing has emerged as a transformative 
solution for deploying machine learning models in 
healthcare, offering scalability and accessibility that 
significantly benefit health applications. Its 
integration into healthcare systems, particularly for 
chronic kidney disease (CKD) detection, has 
addressed a critical societal need by allowing health 
institutions to use cloud-based predictive models 
without the heavy investment in costly 
infrastructure. Cloud platforms enable continuous 
model updates and improvements by supporting 
real-time data processing, which enhances the 
accuracy and reliability of predictions over time. 
This capability is crucial for health monitoring 
systems, where timely and precise predictions can 
lead to better patient outcomes. Many studies have 
highlighted the advantages of cloud-based 
healthcare solutions, particularly their ability to 

provide real-time access to prediction models and 
decision-support systems [20]. Such systems enable 
healthcare providers to make data-driven decisions 
quickly, improving patient care and potentially 
reducing medical errors. By offering a flexible and 
cost-effective approach to model deployment, cloud 
computing has become an essential tool in 
modernizing healthcare services and improving 
patient outcomes, especially in chronic disease 
management. 
Diabetes is a chronic condition caused by inefficient 
insulin use in the body. Early detection can 
significantly improve patients' quality of life. Unlike 
traditional methods, deep learning models eliminate 
the need for manual feature extraction. In this study, 
we developed a real-time monitoring hybrid deep 
learning model to detect and predict Type 2 diabetes 
mellitus, utilizing the publicly available PIMA 
Indian diabetes database. The study contributes in 
four ways [21]. First, it conducts a comparative 
analysis of various deep learning models for 
diabetes detection. Based on experimental results, 
we propose merging two models CNN 
(Convolutional Neural Network) and Bi-LSTM 
(Bidirectional Long Short-Term Memory) to 
enhance diabetes prediction accuracy. Our findings 
show that the CNN-Bi-LSTM model outperforms 
other deep learning techniques, achieving an 
accuracy of 98%, sensitivity of 97%, and specificity 
of 98%, which is 1.1% higher than existing state-of-
the-art algorithms. This hybrid model provides 
clinicians with real-time monitoring capabilities and 
comprehensive patient data for improved care and 
decision-making 
AI’s impact in radiology is evident through the use 
of CNNs for image processing and VAEs for data 
augmentation and privacy protection, highlighting 
challenges such as data privacy and the need for 
large datasets, as discussed by Sitaraman (2022). 
Leveraging these findings, the proposed method 
integrates similar AI techniques to improve early 
detection in healthcare while addressing both ethical 
and technical constraints [22].  
Blockchain technology, gaining significant 
momentum in the digital era, is expanding its 
application far beyond cryptocurrencies. In 
healthcare, it enhances data-sharing, allowing users 
to control access to their Electronic Health Records 
(EHRs) based on user type, ensuring privacy and 
security [23]. The integration of blockchain with 
machine learning combines the strengths of both 
technologies data analysis and prediction with 
robust security enabling predictions from authentic 
datasets without compromising integrity. In this 
paper, the focus is on predicting diabetic retinopathy 
(DR), a chronic condition caused by diabetes that 
leads to blindness. The dataset, sourced from IEEE 
Data Port, underwent pre-processing using median 
filtering and lesion segmentation. The Taylor 
African Vulture Optimization (AVO) algorithm was 
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employed for hyper-parameter tuning, with the 
significant features then passed to the SqueezeNet 
classifier for prediction. The prediction results were 
stored in blockchain architecture, ensuring secure, 
authorized access by the EHR manager. The 
proposed model outperformed previous approaches, 
achieving 94.2% accuracy, 94.8% sensitivity, and 
93.4% specificity. 
Transplant pathology is crucial for ensuring the 
proper function of transplanted organs and 
preventing immune rejection. Accurate diagnosis 
and timely treatment are essential for improving 
transplant outcomes. Recent advances in artificial 
intelligence (AI)-empowered digital pathology offer 
potential in monitoring allograft rejection and 
managing immunosuppressive drug weaning [24]. 
To explore AI's role in transplant pathology, a 
systematic review of electronic databases from 
January 2010 to April 2023 was conducted, using 
the PRISMA checklist for article selection. A total 
of 68 articles were identified, with 14 meeting the 
inclusion criteria. The review focuses on AI 
applications in four major transplant organs: heart, 
lungs, liver, and kidneys. Several deep learning-
based AI models have been developed to analyze 
biopsy specimens from transplant organs, showing 
promise in enhancing clinicians’ decision-making 
and reducing diagnostic variability. The review 
concludes that while AI has limitations, its 
advancements could significantly improve 
transplant outcomes and pave the way for future 
progress in this field. 
Basani (2024) introduces a hybrid YOLOv3-Mask 
RCNN model to improve object localization in IoT-
enabled RPA systems, enhancing both speed and 
accuracy. The model outperforms conventional 
methods with impressive results in dynamic 
environments. Based on these insights, the proposed 
method aims to enhance object localization and 
prediction accuracy in healthcare, particularly for 
medical imaging and diagnostics [25]. 

 
3. PROPOSED METHDOLOGY  
The flow diagram for detecting CKD using a 
machine learning pipeline begins with the Data 
Collection phase, where clinical data such as patient 
history, lab results, and vital signs are gathered. The 
next step, Preprocessing, involves cleaning the data 
by handling missing values, normalizing features, 
and encoding the target variable, which in this case 
is the presence or absence of CKD. Once the data is 
preprocessed, Feature Extraction is performed using 
an Autoencoder (AE), a type of unsupervised 
machine learning model that reduces the 
dimensionality of the data and identifies relevant 
features that contribute to CKD prediction [26]. 
These extracted features are then passed on to the 
Classification step, where a Recurrent Neural 
Network (RNN) model is trained to predict the 
outcome of CKD based on the available features. 
The Training phase involves optimizing the RNN 
model by feeding it the extracted features, allowing 
the network to learn patterns in the data. After 
training, the model undergoes Validation using 
Performance Metrics such as accuracy, precision, 
and recall to assess how well it can predict CKD 
outcomes on unseen data. If the model meets the 
required accuracy, it is then Deployed in the Cloud, 
enabling it to be accessed remotely and providing 
scalability for real-world applications. With the 
model deployed, it can predict outcomes for new, 
incoming data, providing clinicians with valuable 
support for early CKD detection. By leveraging this 
cloud-based solution, healthcare providers can 
access and utilize the model as part of their 
diagnostic workflow, improving efficiency and 
reducing human error. Overall, this machine 
learning pipeline aims to enhance the accuracy and 
scalability of CKD detection through automated and 
data-driven predictions [27]. 

 
Figure 1: CKD Detection Using Autoencoder and RNN 

3.1 Data collection 
The database consists of clinical records containing 
different attributes of patients suffering from CKD. 

The parameters included are blood cell counts; 
blood pressure; serum creatinine; blood urea; 
glucose levels; and other related diagnostic 
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measures. The dependent variable is referred to as 
presence of CKD or absence of CKD. These many 
findings are gathered from health-relevant points of 
the numerous conditions of CKD. The data set is 
preprocessed for the missing values and the non-
numeric attributes are encoded to maintain the 
consistencies. This cleaned data set will be used 
after training for model prediction. A cybersecurity 
monitoring approach using Graph Neural Networks 
(GNNs) and semantic stream processing has been 
shown to reduce false positives by 37% while 
achieving high precision (94.3%) and maintaining 
low latency. Building on these capabilities, the 
proposed method adopts similar techniques to 
strengthen real-time fraud detection and enhance 
prediction accuracy, extending these concepts to 
improve healthcare systems particularly in the 
diagnosis of chronic kidney disease based on the 
findings of Induru and Arulkumaran (2021) [28]. 
 
3.2 Preprocessing  
To begin, missing values are to be handled by 
dropping rows that have NaNs, since that is what the 
project says. Numeric features should then become 
float types ensuring its defined in the machine 
learning model. Then, the entire dataset would then 
be standardized using StandardScaler making all the 
features in common, so it will be better in using next 
models like PCA, Autoencoders, and RNNs. 
Categorical attributes then undergo encoding using 
either Label Encoding or One-Hot Encoding, if there 
are any. Outliers are also treated as these might 
influence the model prediction [29]. Lastly, 
separation of the dataset prepared into features and 
target variable: train and test for the model. 
 
3.2.1 Data Cleaning 
Data cleaning tackles the identification and 
treatment of issues about the data set, such as the 
missing value, formatting, or inconsistency [30]. 
The first step involves deleting rows that contain 
missing values (NaNs), following the project 
direction that demands cleaning the dataset for 
information regarding the analysis. This can be 
represented as:  
 Cleaned Data =  Original Data −  Rows with NaNs  

                                              (1) 
Next, numerical features are converted to the proper 
data type (float) and ready for machine-learning 
algorithms. If any outliers are detected, they are 
usually fixed or deleted so that they do not bias the 
model. Eventually, the cleaned data are 
homogenized and properly formatted so that all 
variables are standardized for further analysis and 
model training. 
 
3.2.2 Target Variable Encoding 
Target variable encoding is defined as encoding the 
target labels, CKD status in this instance, into a 
numerical form so they can be utilized by machine-

learning models [31]. The target variable is, in this 
case, binary, with two values, 'ckd' for someone 
having CKD and 'not ckd' for a person with no CKD. 
These labels are encoded under Label Encoding, 
which assigns 1 for 'ckd' and 0 for 'not ckd.' The 
notation of the encoding process is: 

 Encoded Target = ቊ
1  if CKD =  'ckd' 

0  if CKD =  'notckd' 
 

    (2) 
This numeric representation ensures that the 
machine-learning model is able to interpret the 
information about the target variable and predict 
accordingly. 
 
3.3 Feature Extraction Using Auto Encoder 
The procedures involved in malleable feature-see 
extraction by autoencoders are lowering data 
dimensionality with preservation of the very salient 
features of data functionalities. This refers to the fact 
that an Autoencoder is a neural network that is 
specifically built to learn the compressed version 
(encoding) of the input data. The whole process 
entails two stages: the encoder compresses data into 
lower-dimensional representation, and the decoder 
reconstructs the original data from this compressed 
form. A hybrid approach for workload forecasting in 
autonomic database systems introduced by 
Parthasarathy (2023) combines evolutionary 
algorithms and clustering techniques to achieve 
dynamic optimization, resulting in improvements in 
response time, throughput, and resource utilization. 
Leveraging these strategies, the proposed method 
adapts similar techniques to enhance predictive 
accuracy and resource management in healthcare, 
particularly for early detection of chronic kidney 
disease [32]. 
3.3.1 Auto Encoder 
An Autoencoder constitutes of a pair of parts: the 
encoder and the decoder. The encoder encodes the 
input X into a compact lower-dimensional 
representation, whereas the decoder reconstructs the 
original input from this representation [33]. This is 
illustrated mathematically as follows: 

𝑋̂ = 𝑓decoder ൫𝑓encoder (𝑋)൯   
   (3) 

Where, the input is called 𝑋, the encoding function 
𝑓encoder  compressing it into a lower-dimensional 
space (the latent space), the decoding function 
𝑓decoder  reconstructing input from the latent space, 

while 𝑋̂ is the reconstructed data 
 
3.4 Classification using RNN  
This is a diagram of a recurrent neural network 
(RNN) architecture consisting of an input layer, two 
hidden layers, and an output layer. RNNs offer a 
recurrence between the layers through which the 
output of a given hidden layer at a given time step 
can be fed into the same layer during the next time 
step. This encourages an RNN to learn how to take 



International Journal of Food Safety and Public Health  
Vol. 12 (2), pp. 001-012, July, 2025 

ISSN: 2756-3693 
 

6 
 

sequential data and give relationships to information 
collected from earlier time periods. The input is 
passed to the network, propagates through its hidden 
layers, and then combines recurrences that uphold 
some previous time step's information. Finally, in 
this line of application area-limited tasks such as 
time series forecasting, natural language processing, 
and predicting a sequence, such information lends 
itself well to the output layer giving the predictions 
of the model according to the patterns learned. 

Valivarthi and Kurniadi (2024) recommend a hybrid 
model combining LSTM, CNN, Transformers, and 
spectral analysis to detect side-channel attacks in 
embedded systems. The model achieves 97% 
detection accuracy and robust real-time 
performance. Adapting these methods, the proposed 
approach applies similar hybrid techniques to 
enhance predictive accuracy in healthcare, 
particularly for early chronic kidney disease 
detection [34]. 

 
Figure 2: RNN 

3.4.1 Input Layer 
The raw incoming sequence data during each time-
step, designated as the input layer 𝑋௧ , is fed into the 
input usually by a vector that collectively represents 
all features of data collected during particular time 𝑡 
[35]. This might be any kind of features, like time-
series values, words in a sentence, or even readings 
from sensors. The data is forwarded through the 
input layer to the next hidden layers. For example, 
the input might comprise the following at current 
time step 𝑡: 

𝑋௧ = [𝑥ଵ, 𝑥ଶ, … , 𝑥௡]    
  (4) 

where  𝑥ଵ, 𝑥ଶ, … , 𝑥௡ are individual features of the 
input at time 𝑡. This data then becomes forwarded to 
hidden layers in processing. 
 
3.4.2 Hidden Layer 
Even the present input 𝑋௧  and the old hidden state, 
ℎ௧ିଵ are processed through the hidden layer in an 
RNN. The purpose of this layer is to learn important 
dependency of the data temporally by recalling past 
inputs. Here, the hidden state at time step 𝑡, ℎ௧, is 
calculated from the below equation:  

ℎ௧ = 𝑓(𝑊௛௛ℎ௧ିଵ + 𝑊௫௛𝑋௧ + 𝑏௛)   
   (5) 

Where, 𝑊௛௛  is the weight matrix connecting the 
previous hidden state to the current hidden state. 
𝑊௫௛  is the weight matrix connecting the input at 
time step 𝑡 to the hidden state. 𝑏௛  is the bias term for 
the hidden layer. 𝑓 is the activation function, 

generally tanh or ReLU, which introduces non-
linearity to the model. 
3.4.3 Recurrence 
RNN allows sequence data processing due to 
recurrences. At time step 𝑡 hidden state ℎ௧  is 
dependent on previous hidden state ℎ௧ିଵ. In this 
way, network could "remember" the past and use the 
information for providing current state inputs. 
Mathematically, this recurrence is the previous 
hidden state being used as part of the current one in 
the computation of the current hidden state. A 
healthcare system integrating lightweight CNNs, 
capsule networks, and a DAG-based blockchain has 
been shown to improve diagnostic accuracy, 
scalability, and data security, achieving 99.9% data 
integrity, 96.4% accuracy, and 97.1% sensitivity 
performance well-suited for resource-constrained 
environments. Building on these advancements, the 
proposed method applies similar technologies to 
strengthen early CKD detection and enhance data 
security, as demonstrated by Nippatla et al. (2024) 
[36]. 

ℎ௧ = 𝑓(𝑊௛௛ℎ௧ିଵ +𝑊௫௛𝑋௧ + 𝑏௛)  
   (6) 

It is this recurrent connection that makes RNNs 
substantively different from their standard, feed-
forward neural-network cousins. This provision over 
time for the hidden state makes an RNN capable of 
handling sequential data and catching patterns that 
cross time steps. 
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3.4.4 Output Layer 
The output layer is referred to as the layer that makes 
predictions using the information fed to it through 
the hidden layers. The output 𝑦௧  at every time 𝑡 is 
determined by the manipulation of hidden state ℎ௧  
according to the weight matrix 𝑊௛௬ with an added 
bias term 𝑏௬ .  The equation can be expressed as 
follows:  

𝑦௧ = 𝑊௛௬ℎ௧ + 𝑏௬    
  (7) 

where, 𝑊௛௬ is the weight matrix connecting the 
hidden state to the output layer. 𝑏௬ is the bias term 
added to output. The output is generally fed into 
some activation function like sigmoid for a binary 
classification output or SoftMax for multiclass 
classifications. 
 
3.5 Trained AE and RNN Model  
The Autoencoder (AE) trained creates a model for 
compressing and reconstructing the input data 
thereby extracting useful features and reducing 
dimensionality [37]. Once trained, the latent features 
obtained through the encoder part of the 
Autoencoder serve as inputs to the RNN. The RNN 
model is then trained on these compressed features 
to identify the temporal patterns with the 
dependencies existing within the data for 
classification or prediction tasks. A loss function 
chosen is minimized using backpropagation and an 
optimizer such as Adam. The performance of the 
model on test data after training was assessed by 
measures such as accuracy or F1 score, and 
afterwards, the AE and RNN model is ready to be 
deployed to predict new data.  
 
3.6 cloud deployment 
The deployment of the models will involve hosting 
the trained Autoencoder (AE) and RNN model on 
the cloud platform for easy access and scalability for 

prediction making [38]. Such a model hosted in 
cloud services like AWS, Google Cloud, or Azure 
would thus be subjected to a large incoming volume 
of data. APIs are developed for possible integration 
with other applications for prediction tasks. This 
cloud infrastructure is flexible and scalable in case it 
needs to grow. The model would be continuously 
monitored to assess its performance and 
effectiveness. This model is also updated now and 
then through retraining with new data to maintain its 
accuracy. 
 
4 RESULT AND DISCUSSION  
The metrics concerned with the system resource 
utilization as appeared in the said periods are 
represented in the table. The columns capture CPU 
utilization, Memory usage, GPU utilization, Disk 
I/O, Network throughput, and Latency, pointing to 
different system performance metrics [39]. For 
instance, during the first point in time, CPU 
utilization was at 78%, memory usage at 74%, GPU 
utilization at 50%, Disk I/O at 68, network 
throughput at 34, and latency at 242 ms. It's very 
insightful in proving how each resource reacts to 
different states. For example, CPU utilization may 
reveal between 67% and 85%, whereas latency from 
169 ms to 290 ms. These metrics serve critical 
importance in understanding the system's 
performance and bottleneck identification. The 
Ethnographic Health Systems Research (EHSR) 
approach, combining ethnographic methods with big 
data analytics to improve healthcare delivery, 
particularly in cardiology, is revealed by Srinivasan 
et al. (2023). Their method enhances decision-
making, cost-effectiveness, and patient care. Using 
this approach, the proposed method integrates 
similar techniques to enhance early chronic kidney 
disease detection, improving outcomes and patient 
care [40]. 

Cpu 
utilization 

Memory 
usage 

 

Gpu 
utilization 

Disk io 
 

Network 
throughput 

 

Latency 
 

78 74 50 68 34 242 

85 77 65 62 44 204 

67 73 83 69 40 290 

69 69 75 40 48 169 

79 60 58 69 51 167 

67 62 50 44 32 189 

 
Figure 3: represents the training accuracy and 
validation accuracy across a total of 50 epochs in the 
training life cycle of the model. The training 
accuracy shows a steep rise indicated at the green 

line and attains a value of about one at around the 
10th epoch indicating its rapid learning and fitting in 
the training data [41]. In contrast, validation 
accuracy shows slow increase sloping towards settle 
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on a lower value than that of training accuracy, 
which is an indication that it might overfit. 
Overfitting happens when the model really tries to 
fit in the training data but has a poorer performance 
when faced with new uncharted data. It can be 

observed as depicted by the huge gap between 
training and validation accuracies after the 10th 
epoch. A hint toward needing to tune the model 
hence such as regularization or early stopping to 
improve generalization might be necessary.  

 
        Figure 3: Training and validation accuracy 

Figure 4: depicts the binary classifier's performance, 
identifying patients as having 'Disease' or 'Healthy.' 
The model achieved 362 True Positives (TP), where 
subjects were correctly predicted as "Disease" under 
the true label of the same name. This indicates that 
the model has been able to identify most cases of 
disease correctly. The False Positives (FP), where 
the model inaccurately predicted "Disease" for a true 
"Healthy" label, accumulated to 11, indicating that 
only a small value of cases was wrongly predicted 
as having disease. The False Negatives (FN), where 
the model indicated "Healthy" for a true "Disease" 
label, accounted for only 1, therefore suggesting that 
there are very few missed cases of disease. The True 
Negatives (TN) were 423, which was when the 

model correctly predicted "Healthy" and the true 
label was also "Healthy." This suggests good 
predictive power of healthy cases. Thus, overall, the 
computational model proved its worth by being 
strong in terms of true positive cases and low for 
misclassification. Dyavani et al. (2022) reveal a 
Transformer-based model for financial fraud 
detection, TransSecure, which uses self-supervised 
learning and Masked Transaction Modeling (MTM). 
It achieves 99.31% accuracy and 99.54% precision. 
Employing this approach, the proposed method 
adapts similar techniques to enhance early chronic 
kidney disease detection, improving diagnostic 
accuracy and minimizing false positives [42]. 
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Figure 4: Confusion Matrix 
Figure 5: captures a number of evaluation metrics to 
measure the performance of a classification model. 
The best accuracy of model can be inferred from the 
value of 0.985; thus, it indicates that nearly all 
predictions made are right. The result of Precision is 
0.975, which says that for most of the times, while 
predicting a positive result (disease), the model 
gives correct results. Sensitivity (to be known as 
Recall) stands on 0.998; that shows this model is 
good at pinpointing actual positives (disease). 

Specificity is 0.971 so it will be able to capture 
healthy people correctly pretty well. The F-measure 
score shows 0.986; therefore, the precision and 
recall have been balanced in that score. Finally, NPV 
(Negative Predictive Value) is 0.997, which 
indicates that prediction of very healthy individuals 
is recognized as well. Overall, the performance of 
the model is really impressive as per all the major 
parameters, with sensitivity and NPV being the top 
[43].  

 
Figure 5: Performance metrics 

Figure 6: shows the variation of various system 
metrics over a period of 24 hours. Each line 
corresponds to a single metric: CPU Utilization 
(blue), Memory Usage (green), GPU Utilization 
(orange), Disk I/O (red), Network Throughput 
(purple), and Latency (pink). The x-axis denotes 
hours in the time dimension and the metrics value on 
the y-axis. From the graph, it can be inferred that 
CPU Utilization and GPU Utilization show high 
spikes at certain hours corresponding to high 
activity, while Memory Utilization and Network 
Throughput tend to be stable through the day [44]. 
Disk I/O and Latency show lower fluctuation 

throughout. Such a pattern exhibits existence in 
system loads, which can be critical for performance 
monitoring and tuning. A robust AI-Augmented 
Test Automation Framework developed by Ramar et 
al. (2024) combines POM and BDD to enhance 
software testing efficiency, leveraging 
reinforcement learning for test case generation and 
self-healing to achieve 91% defect detection and 
94% test coverage. Guided by these capabilities, the 
proposed method adapts similar AI techniques to 
improve early chronic kidney disease detection, 
enhancing scalability and efficiency [45]. 

 
Figure 6: Metrics Over Time 
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5 CONCLUSION 
This work proposes a sound architecture for 
detecting early CKD with an amalgamation of 
Autoencoders and Recurrent Neural Networks. The 
proposed method surpasses the old diagnostic 
methodologies by forging significant features 
extraction from Autoencoders and modelling time 
dependencies through RNNs. Further the 
effectiveness of the model was verified using 
various performance metrics such as accuracy, 
precision, and sensitivity with almost high values for 
all. This model can also be cloud deployed for 
scalability and enable continuous upgrading 
accessibility; hence it can be used realistically in 
healthcare applications. Further works could focus 
more on increasing the input diversity of the model 
and on enhancing its predictive quality. 
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