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Abstract: Radiomics, which is the high-throughput extraction of quantitative features of medical images, is a 
paradigm shift in diagnostic and prognostic medicine. Radiomics can be used to find new biomarkers that could 
be used to define disease phenotypes in a way that human eyes cannot process to locate them by transforming the 
standard-of-care imaging into data which can be mined. This is a cumulative review that attempts to compile 
existing literature to analyze the role of integrating sophisticated image processing pipeline and machine learning 
(ML) or deep learning (DL) algorithms in radiomics. We investigate the general workflow, including image 
acquisition and segmentation, feature extraction, feature selection, and model development, and both the 
possibilities provided by it and the technical difficulties. The review uses various applications such as the 
assessment of pulmonary diseases, oncology, and cardiac risk prediction as an illustration of the state-of-the-art. 
Threatening issues like feature reproducibility, model interpretability, heterogeneity of data and the need to have 
a robust validation are addressed in detail. And, last but not the least, we present future directions, which include 
the necessity of universal protocols, explainable AI (XAI), multimodal data fusion and ethical application of these 
potent technologies in clinical practices. 
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1. Introduction 
The medical imaging and artificial intelligence (AI) 
combination has led to the emergence of radiomics, 
a subdiscipline that is dedicated to the automated 
extraction of a huge number of quantitative features 
of radiographic images. These characteristics that 
extract texture, shape, intensity and wavelet patterns 
give a complete radiomic signature that can help 
identify intra-tumoral heterogeneity, disease 
subtypes and prognostic data not visible to the naked 
eye (Amudala Puchakayala, 2023). The premise of 
the radiomics is that these data-driven signatures 
have the potential to be used as non-invasive 
biomarkers in the diagnosis, prediction of treatment 
response and prognosis of a broad range of ailments, 
such as cancer, chronic obstructive lung disease 
(COPD) and cardiovascular ailments. 
Radiomics pipeline is a highly interdisciplinary 
process since it unites both the techniques of 
advanced image processing and the advanced 
technologies of ML/DL. The present review 
proposed is expected to give a synthesized account 
of this pipeline based on and through the 
incorporation of the findings of a curated collection 
of the recent studies. We are going to consider the 
utilization of traditional machine learning systems, 
such as Support Vector Machines (SVM) and 

ensemble models, and the new deep learning 
frameworks. In addition, we will place radiomics in 
the framework of general trends in AI, including the 
issues of data quality, model transparency and 
ethical use as discussed in related literature on 
supervised learning, multimodal learning, and 
responsible AI (Ghule et al., 2024; Sardesai et al., 
2025; Puchakayala, 2022). 
 
2. The Radiomics Pipeline: From Images to 
Insights 
2.1. Image Acquisition and Preprocessing 
Any radiomics study is based on non-irregular and 
good image data. The acquisition parameters (e.g. 
scanner type, slice thickness, reconstruction kernel) 
may cause very high amounts of noise and bias on 
the extracted features, which poses a threat to 
reproducibility (Puchakayala, 2024; Ghori, 2019). 
Research states how vital it is to have standardized 
imaging protocols (Ghori, 2021; Puchakayala, 
2022). As an example, the studies of COPD 
detection showed that the model can perform with 
great results with both low-dose and standard-dose 
CT scans, but the most predictive types of features 
(e.g., parenchymal texture vs. lung shape) differ 
across doses and suggest the effects of acquisition 
settings on the radiomic feature space (Saha et al., 
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2025; Amudala Puchakayala et al., 2024). All these 
variabilities should be countered by preprocessing, 
including resampling of images, normalization of 
images (e.g., Z-score, histogram matching) and 
reduction of noise, which will make features 
comparable across datasets (Puchakayala, 2022; 
Shalini et al., 2023). 
2.2. Tumor or Region of Interest (ROI) 
Segmentation 
Proper definition of the ROI, be it a tumor, be it an 
organ, be it a particular pathological region is the 
priority as the values of the features are computed 
directly based on these volumes (Puchakayala, 
2024; Sardesai et al., 2025). Segmentation may be 
carried out in a manual, semi-automatic or in an 
automatic manner. Manual segmentation is the best, 
the gold standard though it is time-consuming and 
has an inter-observer variation (Ghori, 2018). The 
use of tools that use deep learning to perform 
automatic segmentation based on the architectures 
such as CNNs and U-Nets has been motivated by the 
rising trend and has been highly successful in 
computer vision application areas including content-
based image retrieval and hand gesture recognition 
(Marathe et al., 2022; Ghori, 2019). These models 
are capable of enhancing uniformity and size in 
radiomics research-intensive studies (Shalini et al., 
2023). 
2.3. Feature Extraction 
The step entails the calculation of a vast number of 
quantitative characteristics on the segmented ROI 
(Puchakayala, 2024; Ghori, 2020). The features are 
normally classified into: 

 First-Order Statistics: Characterize the 
frequency of the voxel intensities (e.g. 
mean, median, kurtosis, entropy) (Ghori, 
2018). 

 Shape-Based Features: Characterize 
three-dimensional geometry of the ROI 
(e.g., volume, sphericity, surface area) 
(Puchakayala, 2024). 

 Second-Order/Texture Features: 
Characterize the spatial relationships 
between voxels, based on matrices such as 
Gray-Level Co-occurrence Matrix 
(GLCM) and Gray-Level Run-Length 
Matrix (GLRLM), and Gray-Level Size 
Zone Matrix (GLSZM) (Sardesai et al., 
2025). 

 Higher-Order Features: These are 
functions of filter transforms (or Laplacian 
of Gaussian) which describe patterns of 
different scale and orientation (Ghori, 
2019). 

More complex advanced signal processing methods, 
e.g., Quantum Wavelet Transform - QWT, Empirical 
Mode Decomposition - EMD are being applied in 
radiomics to do more elaborate multi-resolution 

texture analysis and artifact removal (Sardesai & 
Gedam, 2025; Sheela & Jadagerimath, 2022). 
 
2.4. Feature Selection and Dimensionality 
Reduction 
The first feature set can effortlessly be in the 
thousands, and this causes dimensionality curse and 
significant chances of overfitting the model (Ghori, 
2019; Puchakayala, 2022). Mainly, it is important to 
have a strong feature selection. Methods include: 

 Univariate Statistics: Alternative features 
(e.g., t-tests, ANOVA) that have very high 
differences among the groups (Ghori, 
2018). 

 Multivariate Methods: Applying such 
techniques as Least Absolut Shrinkage and 
Selection Operator (LASSO) regression or 
tree-based importance scores to get a 
parsimonious, non-redundant set of 
features (Ghule et al., 2024; Puchakayala, 
2024). 

 Principal Component Analysis (PCA): A 
transformation to a lower dimensional 
space of components that have no 
correlation (Ghori, 2020). 

The objective will be to establish a stable disease-
relevant radiomic signature, which is predictable in 
other cohorts (Sheela & Shalini, 2024). 
 
3. Machine Learning and Deep Learning in 
Radiomics Modeling 
3.1. Traditional Machine Learning Models 
After a fine set of features is acquired, the predictive 
or prognostic model is developed by training in an 
ML classifier (Ghori, 2018; Ghule et al., 2024). 
Algorithms that have been found in the application 
of educational and medical prediction are common, 
and they include: 

 Support Vector Machines (SVM): It works 
well with high-dimensional data and can be 
combined with other optimization methods 
to learn hyper parameters such as Bayesian 
Optimization (BO-SVM) as seen in high 
accuracy in signal classification tasks 
(Sardesai & Gedam, 2025; Ghori, 2019). 

 Ensemble Methods (Random Forests, and 
Gradience Boosting): Radiomics in the 
literature find Ensemble Methods more 
attractive: That is, they are resistant to 
noise and can warrant non-linear 
relationships as well as they typically 
provide perceptivities on features in priori. 
In COPD dynamic, the identification of 
changes in air density and the identification 
of fast progressors were effectively 
conducted with the help of gradient 
boosting models (i.e., CatBoost) (Saha et 
al., 2025). The use of similar methods is 
promoted in predicting soil quality and 
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detecting financial anomalies, and they also 
have a broad range (Saha et al., 2025; 
Kumar et al., 2023; Ghori, 2018; 
Puchakayala, 2024). 

 Logistic Regression: Due to its tendency to 
be frequently used as a benchmark, it is 
most frequently used when the feature 
coefficients are desirable to be interpretable 
(Ghule et al., 2024). 

These strengths and challenges of these models, 
which are directly relevant to the radiomics context, 
are echoed in the systematic review of supervised 
learning by Ghule et al. (2024) as an aid in 
performance prediction. 
3.2. Deep Learning Approaches 
DL proposes end-to-end substitute, which learns to 
extract feature representations in hierarchy by using 
image patches or complete images, and does not 
require a step in which features are extracted 
manually (Ghori, 2019; Puchakayala, 2024). 

 Convolutional Neural Networks (CNNs): 
The STREAM of imaging DL. Model 
CNNs (ex: ResNet, Inception) may be 
either applied as feature extractors or can 
be brought to selected radiomics tasks, 
similar to those utilized in content-based 
image retrieval (Marathe et al., 2022; 
Shalini et al., 2023). 

 Hybrid Models: Radiomic features with 
deep learning features- Use both methods 
together to take advantage of the other 
ones. Moreover, generative models such as 
Generative Adversarial Networks (GANs) 
are also under investigation of data 
augmentation to boost small sample sizes 
or even highly complex missing data 
imputation, which is common in healthcare 
data (Bansal et al., 2025; Sardesai et al., 
2025; Puchakayala, 2024). 

4. Key Applications and Empirical Findings 
Some of the interesting applications are brought out 
in the literature: 

 Pulmonary Disease: COPD has exhibited 
a great potential with Radiomics. Models 
that used radiomics characteristics basing 
on inspiratory CT scan measurements were 
found to have a better diagnostic quality 
(AUC of approximately 0.90) than standard 
measures such as the percentage of 
emphysema. What is more, these features 
are likely to predict the emphysema 
progression in the future and detect so-
called rapid progressors with the high level 
of accuracy (AUC =0.74) and possible 
early intervention (Amudala Puchakayala 
et al., 2024; Saha et al., 2025; Ghori, 2021). 

 Oncology: This is not the main point of the 
given citations, but a huge amount of 
literature utilizes radiomics to classify 

tumors, grade them, and predict their 
response to any given treatment (e.g., 
chemotherapy, radiotherapy) and survival, 
regardless of the type of cancer 
(Puchakayala, 2024; Sheela & 
Jadagerimath, 2022). 

 Cardiovascular Risk: Predicting risks with 
radiomics and clinical information, similar 
to how the conceptual framework of 
predicting cardiac arrest in diabetic patients 
work, is an emerging field where the ML 
models can synthesize complex, multi-
modal data to make personalized risk 
(Sheela & Shalini, 2024; Ghule et al., 
2024). 

5. Critical Challenges and Future Directions 
Radiomics has enormous challenges to clinical 
translation, significant as it might be: 

1. Reproducibility and Standardization: 
The biggest obstacle is related to lack of 
standardization in the entire pipeline. 
Activities such as the Image Biomarker 
Standardisation Initiative (IBSI) are very 
important. 

2. Data Quality and Quantity: Radiomics is 
data-hungry. There are common problems 
of missing data, imbalance in the classes 
and small samples in comparison to the size 
of features. The Spatio-Convolutional 
GAIN of imputation (Bansal et al., 2025) 
and the GANs used as generators of 
synthetic data are a promising solution. 

3. Model Interpretability and 
"Explainable AI" (XAI): Complex 
ML/DL models possess a black-box, which 
is a critical issue to clinical adoption. There 
is an urgent demand to achieve made 
measures of model decisions transparent 
and reliable, which is also subject to 
behavioral economics AI applications 
(Ghule) and discussions on responsible AI 
(Puchakayala, 2022). 

4. Multimodal Integration: Multimodal 
machine learning is the way forward, 
which involves radiomic data along with 
genomic (radiogenomics), clinical, 
pathologic, and other data stream combined 
in constructing more holistic models. 
Sardesai et al. (2025) sum up the 
significance and difficulties of this 
combination in their systematic review of 
ML. 

5. Moral and Equitable Implementation: 
Like any AI in medicine, the problem of 
algorithmic biases, privacy of information, 
and equal access should be presupposed. 
Regulatory guidelines and ethics must be 
put in place to make sure that such 
technologies have advantages to all 
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patients without discrimination 
(Puchakayala, 2022). 
 

6. Conclusion 
Radiomics is the state-of-the-art presence in the 
hand of precision medicine, which is driven by 
machine learning and sophisticated image 
processing. This is a synthesized review of the 
current developments in interconnected fields that 
show its ability to release the prognostic and 
diagnostic data that is concealed in medical images. 
One of the examples of how this may be 
transformative is in pulmonary disease. The way to 
strong models that are strategically, clinically 
implemented, however, is fraught with significant 
hurdles to do with standardization, validation, 
interpretability and ethics. The way forward in 
future studies should be to come up with 
reproducible pipelines, encouraging multimodal 
data integration, promoting explainable AI, and 
integrating ethical concerns upfront. Surmounting 
these obstacles, radiomics might become a 
promising research instrument to a trusted part of 
clinical decision-support systems, which will 
eventually result in better patient care and patient 
outcomes. 
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